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Orientation-dependent local density of states in three-dimensional photonic crystals
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We present a fast and efficient method to compute photonic orientation-dependent local density of states
(ODLDOS) in photonic crystals (PCs) based on the point group transform of the vector field. We swiftly
calculate the ODLDOS by this method and acquire the same results as that computed based on many more k
points in half of the first Brillouin zone (FBZ) in face-center-cubic (fcc) photonic crystals. As an example, we also
apply this method to investigate the properties of woodpile photonic crystals and find the remarkable differences
in the ODLDOS along different polarization directions.
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It is well known that the spontaneous emission (SE) rate
of an excited quantum emitter has a strongly environmentally
dependent characteristic. Control of the emission rate of quan-
tum emitters has been demonstrated in different surrounding
environments, such as microcavities [1], photonic crystals
(PCs) [2–4], and metallic micro- and nanostructures [5–8].
The SE manipulation is of great importance in quantum
optics, because it may limit the performance of optoelectronic
devices in a diverse range of applications such as solar energy
harvesting [9], light-emitting diodes [10], miniature lasers,
and single-photon sources [11–13] for quantum information
science.

PCs are periodic dielectric structures with variations in the
refractive index on the length scale on the order of the light
wavelength, which may lead to photonic band gaps [2,3]. The
optical modes can be finely controlled through engineering
the periodicity of the lattice, the filling ratio, and the refractive
index of the PCs. As a result, since the pioneering work of
Yablomovitch [2] and John [3], controlling light emission
using PCs has received increasing experimental [14,15] and
theoretical [16–18] attention.

The SE rate is proportional to the photonic local density of
states (LDOS) [16,18,19]. Therefore, the LDOS plays a key
role in the SE processes and has been extensively investigated
in both theoretical simulations [19–21] and experimental
probes [22]. In PCs, the LDOS can be expressed as ρ(ω,r) =

1
(2π)3

∑
n

∫
FBZ dk|En(k,r)|2δ(ω − ωnk) if the transition dipole

moment of a quantum emitter is in a random orientation. Here
ωnk and En(k,r) are respectively the frequencies and electric
fields of the eigen electromagnetic modes. Its numerical
simulation in PCs had been a challenging issue. Based upon
the lattice-point group theory, Wang et al. in 2003 presented
the transform method that can greatly simplify calculation of
the LDOS [20]. However, the transition dipole moment of
a quantum emitter is not random in many cases, such as the
polarized atom, molecule and quantum dots. In these cases, the
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SE rate �(ω,r,μd) = πωd2

ε0h̄
ρ(ω,r,μd) [18,19] is determined by

the orientation-dependent LDOS (ODLDOS) that is defined as

ρ(ω,r,μd) = 1

(2π )3

∑
n

∫
FBZ

dk|μd · En(k,r)|2δ(ω − ωnk),

(1)

where integration k vector is over the entire FBZ.
A recent experiment [23] has demonstrated that the dipole

moment orientation has an important effect on SE of polarized
emitters. In order to simulate the ODLDOS in Eq. (1), Nikolaev
and coworkers pointed out that due to the difference of the
projection results of the symmetry-related modes, inverse
symmetry [21] can be applied so that the integration is not
performed over the full FBZ. However, the inverse operation
only reduces the integration zone to half of the full FBZ.
It is still very time consuming because the eigenmodes of
electromagnetic fields have to be solved in half of the full
FBZ. In this paper, we develop a point group transform method,
which can reduce the calculations of the ODLDOS in Eq. (1)
to an irreducible Brillouin zone (IBZ) rather than to half of
the full FBZ. This can significantly simplify the calculations
of the ODLDOS.

Note that the FBZ is invariant under any operation of the
lattice point group, and the integral in the FBZ of Eq. (1)
becomes∫

FBZ
dk|μd · En(k,r)|2δ(ω − ωnk)

=
∫

FBZ
dk|μd · En(αi[k],r)|2δ(ω − ωnαi [k]), (2)

where αi(i = 1,2,3, . . . ,nG) belongs to the corresponding
crystal operation point group and ωnai [k] = ωnk. We define
an average integrating function as

Fn(k,r) = 1

nG

∑
ai∈G

|μd · En(αi[k],r)|2, (3)

where nG is the number of element of point group (i.e., the
number of the IBZ). From Eqs. (2) and (3), we can derive∫

FBZ dkFn(k,r)δ(ω − ωnk) =∫
FBZdk|μd · En(k,r)|2δ(ω −ωnk).
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Thus, the ODLDOS can be rewritten by using the average
integral function as

ρ(r,ω,μd) = 1

(2π )3

∑
n

∫
FBZ

dkFn(k,r)δ(ω − ωnk). (4)

Until now, the integral was not simplified because the average
integrand Fn(k,r) defined in Eq. (3) has to be calculated in the
FBZ. We now turn to simplify the computation of the average
integrand. Notice that En(αi[k],r) = λi{αi |t}En(k,r) [20],
{αi |t}En(k,r) = αi[En(k,(αi|t)−1r)] [24], and α−1

i [μd · A] =
α−1

i [μd] · α−1
i [A] (here |λi | = 1, t represents the translation

operator of the crystal, including the gliding operation, and A
is a vector), so we can derive the transformation relationship
between the FBZ and the real points as

|μd · En(αi[k],r)|2 = ∣∣α−1
i [μd] · En(k,{αi |t}−1r)

∣∣2
. (5)

According to Eq. (5), the average integrating function can be
rewritten as

FT
n (k,r) = 1

nG

∑
αi∈G

∣∣α−1
i [μd] · En(k,{αi |t}−1r)

∣∣2
. (6)

Equation (6) means that the average integrand can be cal-
culated in an IBZ. This means that we may solve the eigen
electromagnetic fields only for a k point in a k star consisting of
{αi[k]} points [20], rather than for all of different αi[k] points.
From Eq. (3), it is easy to prove that the average integrand is
invariant under any operation {αi} of the lattice point group,
that is, Fn(αi[k],r) = Fn(k,r). Therefore, the ODLDOS can
be calculated in an IBZ:

ρ(r,ω,μd) = 1

(2π )3
nG

∑
n

∫
IBZ

dkFT
n (k,r)δ(ω − ωnk). (7)

Equations (6) and (7) provide a very efficient and fast method
to calculate the ODLDOS. Our method is nG

2 (nG = 48 for
fcc structures and nG = 16 for woodpile structures) times
faster than the method [19,21] proposed by Koenderink et al.
Furthermore, we can adopt the interpolation technology first
proposed by Monkhorst and Pack [25] to greatly accelerate
the integral calculation in Eq. (7). In general, this method
can be used to effectively calculate some important physical
quantities, which are related to the quantum optics and
quantum information in PCs.

In the following calculations for fcc structures, the detailed
numerical calculation parameters are as follows: the FBZ is
divided into 16 384 coarse grids and 1 048 576 fine mesh points
with the method presented by Monkhorst and Pack [25]. We
first calculate the values of the En(k,r) and ωnk on coarse grids.
Then, we explore the interpolation method to get the values
of |μd · En(k,r)| on the fine-mesh grids. The eigenequation is
solved by an expansion of 725 plane waves.

We consider two inverse opal fcc structures presented in
Ref. [21]. The first one is a TiO2 structure, which is composed
of air spheres with radius r = 0.25

√
2a (here a is lattice

constant). The spheres are covered by overlapping dielectric
shells (refractive ε = 6.5) with outer radius 1.09r , and the
two adjacent spheres are connected by cylindrical vacuum
windows of radius 0.4r . In the second one, the outer radius of
the overlapping dielectric Si shells is about 1.15r (r is the same
as above) with refractive ε = 11.9. The radius of cylindrical

(a) (b)

FIG. 1. (Color online) Relative ODLDOS on points
(0.25,0.25,0)a with a dipole orientation along [−1,1,0]/

√
2

in the fcc structures. The short dash-dotted maroon line and thin
solid orange line correspond to our results and those in Ref. [21],
respectively. (a) TiO2 inverse opal structure with ε = 6.5. (b) Si
inverse opal structure with ε = 11.9.

vacuum windows connecting two neighboring air spheres is
0.2r . The detail parameters and sketch of structure can be
found in Ref. [21].

Based on the transform relationship (5), we exactly derived
a universal Eq. (7) of the ODLDOS in PCs. We have known
that the point group transformation vector t is zero in the fcc
structures. Thus, the transform relationship can be rewritten as
|α−1[μd] · En(k,α−1r)|2 = |μd · En(α[k],r)|2. We can easily
prove through a numerical method that the transform relation
is correct. To validate our point group transformation methods,
we compare our results with those in Ref. [21]. We calculate
the ODLDOS at point (0.25,0.25,0)a of dipole orientation
along the [−1,1,0]/

√
2 direction in two structures. The results

are plotted in Fig. 1 with short dash-dotted maroon lines, and
thin solid orange lines are results from Ref. [21]. The results
are normalized by that in vacuum. We find that our calculation
results are in good agreement with those in Ref. [21]. The
deviations are very small, and this may due to the different
methods in calculation structure factor, which will lead to
some difference of eigenmodes and eigenfrequencies. Through
comparison, we can conclude that our method is validated.
However, we only select 408 k points in an IBZ rather than
145 708 k points in the half FBZ, and it takes very little time
to implement the interpolation calculation. Thus, our approach
makes the computation speed about 145 708/408 � 360 times
faster than that in Ref. [21]. To acquire the calculation results,
we must wait about 4 days when using their method but only
15 minutes when using our method in the same computational
environment.

Nowadays, many groups are interested in researching
woodpile structures [13,26–30]. We now investigate the
properties of the ODLDOS in woodpile structures. In this
section, we consider two typical structures. The first one is
designed by Lin et al. [26], in which the distance between
four adjacent layers is denoted by c. Within each layer, the
rods are separated by a distance d, where c/d = √

2. The
refractive index of the rods is taken as 3.60, which are
placed inside the air. The width and the height of the rods
are w = 0.28d and h = 0.25c, respectively. The second is

015802-2



BRIEF REPORTS PHYSICAL REVIEW A 85, 015802 (2012)

TABLE I. |μd · En(k,r)|2 for dipole orientation μd and some k, r points in woodpile structure.

α α[k] α−1r α−1[μd]/
√

14 Eαk
1 Eαrμ

1 Eαk
2 Eαrμ

2 Eαk
3 Eαrμ

3

(E|0) (0.8,0.4,0.2) (0.2,0.1,0.05) (1.0,2.0,3.0) 0.0001 0.0001 0.0584 0.0584 0.0343 0.0343
(c2z|0) (−0.8, −0.4,0.2) (−0.1, −0.05, −0.2) (−1.0, −2.0,3.0) 0.0008 0.0008 0.0476 0.0476 0.2632 0.2632
(c2x |0) (0.8, −0.4, −0.2) (−0.15, −0.2, −0.2) (1.0, −2.0, −3.0) 0.0123 0.0123 0.0186 0.0186 0.0453 0.0453
(c2y |0) (−0.8,0.4, −0.2) (−0.45, −0.35,0.05) (−1.0,2.0, −3.0) 0.0549 0.0549 0.0273 0.0273 0.0010 0.0010
(Ic4z|0) (−0.4,0.8, −0.2) (−0.45,0.1, −0.3) (2.0, −1.0, −3.0) 0.0310 0.0310 0.0103 0.0103 0.0078 0.0078
(Ic−1

4z |0) (0.4, −0.8, −0.2) (−0.15, −0.05, −0.05) (−2.0,1.0, −3.0) 0.0281 0.0281 0.0548 0.0548 0.1379 0.1379
(Ic2xy |0) (−0.4, −0.8,0.2) (0.2, −0.35, −0.3) (−2.0, −1.0,3.0) 0.0002 0.0002 0.0313 0.0313 0.2768 0.2768
(Ic2xȳ |0) (0.4,0.8,0.2) (−0.1, −0.2, −0.05) (2.0,1.0,3.0) 0.0093 0.0093 0.0481 0.0481 0.0145 0.0145
(I |τ ) (−0.8, −0.4, −0.2) (−0.2, −0.1, −0.05) (−1.0, −2.0, −3.0) 0.0001 0.0001 0.0584 0.0582 0.0343 0.0343
(c4z|τ ) (0.4, −0.8,0.2) (0.1, −0.45, −0.3) (−2.0,1.0,3.0) 0.0008 0.0008 0.0476 0.0476 0.2632 0.2632
(c−1

4z |τ ) (−0.4,0.8,0.2) (−0.35,0.2, −0.3) (2.0, −1.0,3.0) 0.0123 0.0123 0.0186 0.0186 0.0453 0.0453
(c2xy |τ ) (0.4,0.8, −0.2) (−0.05, −0.15, −0.05) (2.0,1.0, −3.0) 0.0549 0.0549 0.0273 0.0273 0.0010 0.0010
(c2xȳ |τ ) (−0.4, −0.8, −0.2) (−0.05, −0.1, −0.2) (−2.0, −1.0, −3.0) 0.0310 0.0310 0.0103 0.0103 0.0078 0.0078
(Ic2z|τ ) (0.8,0.4, −0.2) (−0.35, −0.45,0.05) (1.0,2.0, −3.0) 0.0281 0.0281 0.0548 0.0548 0.1379 0.1379
(Ic2x |τ ) (−0.8,0.4,0.2) (−0.2, −0.15, −0.2) (−1.0,2.0,3.0) 0.0002 0.0002 0.0313 0.0313 0.2768 0.2768
(Ic2y |τ ) (0.8, −0.4,0.2) (0.1,0.2,0.05) (1.0, −2.0,3.0) 0.0093 0.0093 0.0481 0.0481 0.0145 0.0145

a germanium inverse woodpile structure [28]. We adopt the
experimental parameters given in that article. In the following
calculations, the FBZ is also divided into 16 384 coarse grids
and 1 048 576 fine mesh points, and the method is the same
as that in the fcc structures. Through detailed analysis, the
lattice of the woodpile structures belongs to the diamond
lattice group. In the diamond lattice with a global basis,
the point group corresponds to the O7

h group. However, in
the woodpile structure, the basis is composed of three rods,
which has lower operation symmetry than the globule. Thus,
other than 48-fold symmetry operations, there are only 16-fold
symmetry operations are as follows: {E|0}, {c2z|0}, {c2x |0},
{c2y |0}, {Ic4z|0}, {Ic−1

4z |0}, {Ic2xy |0}, {Ic2xȳ |0}, {I |τ }, {c4z|τ },
{c−1

4z
|τ }, {c2xy |τ }, {c2xȳ |τ }, {Ic2z|τ }, {Ic2x |τ }, and {Ic2y |τ }.

As a result, the IBZ for a woodpile structure is different from
those for diamond and fcc structures. In an IBZ, there are
1088 k points in the woodpile structures and 408 k points in
the diamond and fcc structures. In order to acquire ODLDOS of
the woodpile structures, we adopt similar methods and process
as in the fcc structures.

The transform relationship in Eq. (5) in a germanium
inverse woodpile structure [28] for some k points and real-
space r points are shown in Table I, in which Schoenflies
notations are adopted to describe the lattice point group. The
k points belong to a k star, and all operations of the star
are given here for the sake of detailed comparison of the
results of the transform relation. Without loss of generality, we
randomly select a dipole orientation μd = (1,2,3)/

√
14. For

convenience, we use Eαk
n and Eαrμ

n to denote |μd · En(α[k],r)|2
and |α−1μd · En(k,(α|t)−1r)|2 in Table I, respectively. Thus,
we can clearly see that the values of |α−1μd · En(k,(α|t)−1r)|2
are always equal to those of |μd · En(α[k],r)|2. This proves
that our methods are also valid in woodpile structures.

Figure 2(a) shows the relative ODLDOS and the surface of
relative ODLDOS at point (0.275,0.275,−0.135)a in the first
woodpile structure. The relative results are normalized in the
vacuum. We can see that the ODLDOS is highly anisotropic
since it is very different for the three orientations. In general,

the ODLDOS is highest for the μd = [0,0,1] orientation,
intermediate for μd = [−1,1,0]/

√
2 orientation, and lowest

for the μd = [1,1,0]/
√

2 orientation. Furthermore, we plot the
surface of the ODLDOS in a subplot in Fig. 2(a). The surfaces
of the ODLDOS are calculated according to the method pre-
sented by Vos and coworkers [19]. For convenience, we choose
the reduced transition frequency ω = 0.604 in the subplot. The
surface is double-sphere-like, and the anisotropy (ρmax/ρmin)
is 12.8. We find the maximal ODLDOS 15.37 for the μd =
[−0.415,0.572,0.707] orientation. Figure 2(b) shows the
relative ODLDOS and the surface of relative ODLDOS at point
(0,0,0.25)a in the second woodpile structure. The three dipole
orientations are the same as those in Fig. 2(a). However, the
ODLDOS is highest for the μd = [1,1,0] orientation, which is
different from Fig. 2(a). If the reduced transition frequencies

(a)

(b)

FIG. 2. (Color online) The relative ODLDOS and the surface
of the relative ODLDOS in the woodpile structures. (a) In the first
woodpile structure at point (0.275,0.275,−0.135)a, the ODLDOS
along the [1,1,0], [−1,1,0] and [0,0,1] directions are shown by the
solid maroon, short dash-dotted black, and dashed violet curves,
respectively. The subplot gives the surface of the ODLDOS at a
reduced frequency 0.604. (b) In the second woodpile structure at
point (0,0,0.25)a, the ODLDOS along the [1,1,0], [−1,1,0], and
[0, 0,1] directions are shown by the solid maroon, short dash-dotted
black, and dashed violet curves, respectively. The subplot gives the
surface of the ODLDOS at a reduced frequency, 0.693.

015802-3



BRIEF REPORTS PHYSICAL REVIEW A 85, 015802 (2012)

are below 0.69, the two other dipole orientations have small
differences in the ODLDOS, and if the transition frequencies
are higher than 0.69, the ODLDOS along the [−1,1,0] direction
are higher. In the subplot of Fig. 2(b), we present the surface
of ODLDOS at a reduced transition frequency 0.693. The
anisotropy (ρmax/ρmin) is 5.5. Figure 2 gives an intuitive picture
of the orientation-dependent behavior. We know that the SE
rate is proportional to the ODLDOS [18,19]. Therefore, the
control of the polarization direction is conducive to strong
emission enhancement. Our methods can quickly scan points
with the higher ODLDOS, which may lead strong quantum
electrodynamics effects beyond the weak coupling condition.

In summary, we have theoretically and numerically studied
a transform relationship of electric fields in PCs between
reciprocal k points and real-space r points under a lattice point
group operation. Based on this transformation, we have derived

an averaged integral function for calculating the ODLDOS
and the surface of the ODLDOS. Using this integrand, the
computing time can be dramatically reduced. The validity of
our method is also proved. It is found that the ODLDOS will
greatly change along different orientations. This provides an
effective way to control the SE of the quantum emitters.
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